7.1 Vectors in 2 Dimensions

Question Paper

Course	CIE A Level Maths
Section	7. Vectors
Topic	7.1 Vectors in 2 Dimensions
Difficulty	Hard

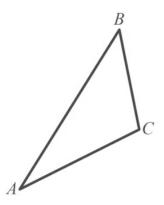
Time allowed: 60

Score: /48

Percentage: /100

Question la

In triangle *ABC*, $\overrightarrow{AB} = 5\mathbf{i} + 8\mathbf{j}$ and $\overrightarrow{BC} = \mathbf{i} - 5\mathbf{j}$



(a) Explain why $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \mathbf{0}$.

[1 mark]

Question 1b

(b) Find \overrightarrow{CA} and calculate its magnitude.

[3 marks]

Question 2a

(a)
$$\mathbf{a} = \begin{pmatrix} -1 \\ n \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} m \\ 6 \end{pmatrix}$

Given that the resultant of a, b and c is the zero vector, find the values of m and n.

[2 marks]

Question 2b

(b)
$$\mathbf{d} = \begin{pmatrix} -3k \\ k \end{pmatrix}$$

Given that $|\mathbf{d}| = 2\sqrt{15}$, find two possible values for k. Give your answer as an exact value.

[2 marks]

Question 3

The point *A* lies on the curve with equation $y = x^2 - 2$. The position vector of *A* is $\overrightarrow{OA} = 3k\mathbf{i} - 17k\mathbf{j}$, where *k* is a positive constant. Find the value of *k*, and hence determine the coordinates of *A*.

[4 marks]

Question 4

The vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are given as

$$\mathbf{a} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -3k \\ k \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

Given that $\mathbf{a} - \mathbf{b}$ is parallel to $\mathbf{a} + \mathbf{c}$ find the value of k.

[4 marks]

Question 5a

Vector \overrightarrow{AB} has a magnitude of $6\sqrt{3}$ and makes an angle of 150° with the positive *x*-axis.

(a) Find \overrightarrow{AB} in the form $x\mathbf{i} + y\mathbf{j}$, where both x and y are given as exact values.

[3 marks]

Question 5b

(b) Find a unit vector in the direction of \overrightarrow{AB} .

[2 marks]

Question 6

In the enchanted kingdom of Vectoria, a magical flying unicorn takes off from the wizard's palace at the point known as O and travels 30 km on a bearing of 300°. Chased by an evil dragon, it then travels an unknown distance of k km due north before reaching the enchanted grove at point P. Given that the position vector of P relative to O is $(x\mathbf{i} + y\mathbf{j})$ km, and that the straight-line distance between the grove and the palace is known to be $30\sqrt{3}$ km, find the exact values of x and y.

[6 marks]

Question 7a

Two forces \mathbf{F}_1 and \mathbf{F}_2 act on a particle, where $\mathbf{F}_1 = 5\mathbf{i} - 3\mathbf{j}$ newtons and $\mathbf{F}_2 = x\mathbf{i} + y\mathbf{j}$ newtons.

The resultant force \mathbf{R} acting on the particle is given by $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$, and acts in a direction parallel to the vector $(-\mathbf{i} - 3\mathbf{j})$.

(a) Find the angle between **R** and the vector **j**, giving your answer in degrees correct to 2 decimal places.

[2 marks]

Question 7b

(b) Show that 3x - y = -18.

[3 marks]

Question 7c

(c) Given that y = -3, find the magnitude of **R**.

[3 marks]

Question 8

Points *A*, *B* and *C* have position vectors $\overrightarrow{OA} = -9\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OB} = -6\mathbf{i}$ and $\overrightarrow{OC} = 3\mathbf{i} - 12\mathbf{j}$, respectively.

Use a vector method to show that points A, B and C lie on the same straight line.

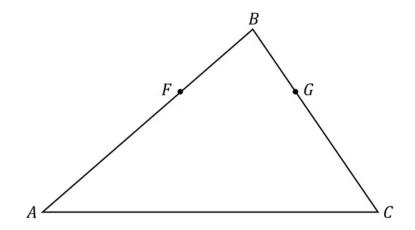
[5 marks]

Question 9a

In triangle ABC, point F lies on AB and point G lies on BC.

F divides AB in the ratio m:n.

The line segment FG is parallel to AC.



(a) Explain why $\overrightarrow{BG} = \lambda \overrightarrow{BC}$ for some constant λ , where $0 \le \lambda \le 1$.

[1 mark]

Question 9b

(b) Given that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{b}$, show that

$$\overrightarrow{FG} = \left(\frac{n}{m+n} - \lambda\right)\mathbf{a} + \lambda\mathbf{b}$$

[4 marks]

Question 9c

(c) Using your result from (b), prove that G divides BC in the ratio n: m.

[3 marks]